1,086 research outputs found

    Unusual case of recurrent renal artery stenosis: lessons to learn

    Get PDF

    Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis.

    Get PDF
    This is the final version of the article. It first appeared from Frontiers via http://dx.doi.org/10.3389/fphys.2016.00313BACKGROUND: Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. METHOD: A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. RESULTS: Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. CONCLUSION: ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure.Biotechnology and Biological Sciences Research Council (Doctoral Training Award), Croucher Foundation of Hong Kon

    Electrophysiological Mechanisms of Gastrointestinal Arrhythmogenesis: Lessons from the Heart.

    Get PDF
    This is the final published version. It first appeared at http://journal.frontiersin.org/article/10.3389/fphys.2016.00230/full.Disruptions in the orderly activation and recovery of electrical excitation traveling through the heart and the gastrointestinal (GI) tract can lead to arrhythmogenesis. For example, cardiac arrhythmias predispose to thromboembolic events resulting in cerebrovascular accidents and myocardial infarction, and to sudden cardiac death. By contrast, arrhythmias in the GI tract are usually not life-threatening and much less well characterized. However, they have been implicated in the pathogenesis of a number of GI motility disorders, including gastroparesis, dyspepsia, irritable bowel syndrome, mesenteric ischaemia, Hirschsprung disease, slow transit constipation, all of which are associated with significant morbidity. Both cardiac and gastrointestinal arrhythmias can broadly be divided into non-reentrant and reentrant activity. The aim of this paper is to compare and contrast the mechanisms underlying arrhythmogenesis in both systems to provide insight into the pathogenesis of GI motility disorders and potential molecular targets for future therapy

    Electrophysiological Mechanisms of Brugada Syndrome: Insights from Pre-clinical and Clinical Studies.

    Get PDF
    This is the final version of the article. It first appeared from Frontiers via https://doi.org/10.3389/fphys.2016.00467Brugada syndrome (BrS), is a primary electrical disorder predisposing affected individuals to sudden cardiac death via the development of ventricular tachycardia and fibrillation (VT/VF). Originally, BrS was linked to mutations in the SCN5A, which encodes for the cardiac Na+ channel. To date, variants in 19 genes have been implicated in this condition, with 11, 5, 3, and 1 genes affecting the Na+, K+, Ca2+, and funny currents, respectively. Diagnosis of BrS is based on ECG criteria of coved- or saddle-shaped ST segment elevation and/or T-wave inversion with or without drug challenge. Three hypotheses based on abnormal depolarization, abnormal repolarization, and current-load-mismatch have been put forward to explain the electrophysiological mechanisms responsible for BrS. Evidence from computational modeling, pre-clinical, and clinical studies illustrates that molecular abnormalities found in BrS lead to alterations in excitation wavelength (λ), which ultimately elevates arrhythmic risk. A major challenge for clinicians in managing this condition is the difficulty in predicting the subset of patients who will suffer from life-threatening VT/VF. Several repolarization risk markers have been used thus far, but these neglect the contributions of conduction abnormalities in the form of slowing and dispersion. Indices incorporating both repolarization and conduction and based on the concept of λ have recently been proposed. These may have better predictive values than the existing markers.GT received a BBSRC Doctoral CASE Studentship at the University of Cambridge and thanks the Croucher Foundation of Hong Kong for the support of his Clinical Assistant Professorship. YC is supported by the ESRC for her Ph.D. studies at the University of Cambridge. BY received funding from the Research Grant Council of Hong Kong for his research

    The application of ANFIS prediction models for thermal error compensation on CNC machine tools

    Get PDF
    Thermal errors can have significant effects on CNC machine tool accuracy. The errors come from thermal deformations of the machine elements caused by heat sources within the machine structure or from ambient temperature change. The effect of temperature can be reduced by error avoidance or numerical compensation. The performance of a thermal error compensation system essentially depends upon the accuracy and robustness of the thermal error model and its input measurements. This paper first reviews different methods of designing thermal error models, before concentrating on employing an adaptive neuro fuzzy inference system (ANFIS) to design two thermal prediction models: ANFIS by dividing the data space into rectangular sub-spaces (ANFIS-Grid model) and ANFIS by using the fuzzy c-means clustering method (ANFIS-FCM model). Grey system theory is used to obtain the influence ranking of all possible temperature sensors on the thermal response of the machine structure. All the influence weightings of the thermal sensors are clustered into groups using the fuzzy c-means (FCM) clustering method, the groups then being further reduced by correlation analysis. A study of a small CNC milling machine is used to provide training data for the proposed models and then to provide independent testing data sets. The results of the study show that the ANFIS-FCM model is superior in terms of the accuracy of its predictive ability with the benefit of fewer rules. The residual value of the proposed model is smaller than ±4 μm. This combined methodology can provide improved accuracy and robustness of a thermal error compensation system

    Deficiency of Smad7 Enhances Cardiac Remodeling Induced by Angiotensin II Infusion in a Mouse Model of Hypertension

    Get PDF
    Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II)-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO) and wild-type (WT) mice by subcutaneous infusion of Ang II (1.46 mg/kg/day) for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV) mass (P<0.01),reduction of LV ejection fraction(P<0.001) and fractional shortening(P<0.001). Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3+ T cells and F4/80+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network. © 2013 Wei et al.published_or_final_versio

    The incidence of all-cause, cardiovascular and respiratory disease admission among 20,252 users of lisinopril vs. perindopril: a cohort study

    Get PDF
    Background: Major international guidelines do not offer explicit recommendations on any specific angiotensin-converting enzyme inhibitor (ACEI) agent over another within the same drug group. This study compared the effectiveness of lisinopril vs. perindopril in reducing the incidence of hospital admission due to all-cause, cardiovascular disease and respiratory disease. Methods: Adult patients who received new prescriptions of lisinopril or perindopril from 2001 to 2005 in all public hospitals and clinics in Hong Kong were included, and followed up for ≥2 years. The incidence of admissions due to all-cause, cardiovascular disease and respiratory disease were evaluated, respectively, by using Cox proportional hazard regression models. The regression models were constructed with propensity score matching to minimize indication biases. Results: A total of 20,252 eligible patients with an average age of 64.5 years (standard deviation 15.0) were included. The admission rate at 24 months within the date of index prescription due to any cause, cardiovascular disease and respiratory disease among lisinopril vs. perindopril users was 24.8% vs. 24.8%, 13.7% vs. 14.0% and 6.9% vs. 6.3%, respectively. Lisinopril users were significantly more likely to be admitted due to respiratory diseases (adjusted hazard ratios [AHR] = 1.25, 95% CI 1.08 to 1.43, p = 0.002 at 12 months; AHR = 1.17, 95% CI 1.04 to 1.31, p = 0.009 at 24 months) and all causes (AHR = 1.12, 95% CI 1.05 to 1.19, p &lt; 0.001 at 24 months) than perindopril users. Conclusions: These findings support intra-class differences in the effectiveness of ACEIs, which could be considered by clinical guidelines when the preferred first-line antihypertensive drugs are recommended

    Animal models of atherosclerosis.

    Get PDF
    Atherosclerosis is a significant cause of morbidity and mortality globally. Many animal models have been developed to study atherosclerosis, and permit experimental conditions, diet and environmental risk factors to be carefully controlled. Pathophysiological changes can be produced using genetic or pharmacological means to study the harmful consequences of different interventions. Experiments using such models have elucidated its molecular and pathophysiological mechanisms, and provided platforms for pharmacological development. Different models have their own advantages and disadvantages, and can be used to answer different research questions. In the present review article, different species of atherosclerosis models are outlined, with discussions on the practicality of their use for experimentation.GT was supported by a BBSRC Doctoral Training Award and thanks the Croucher Foundation of Hong Kong for the generous support of his clinical assistant professorship. YC is supported by the ESRC
    • …
    corecore